
Model Based Verification of Cyber Range Event Environments

Suresh K. Damodaran
MIT Lincoln Laboratory

244 Wood St.,
Lexington, MA, USA

Suresh.Damodaran@ll.mit.edu

David Tidmarsh
MIT Lincoln Laboratory

244 Wood St.,
Lexington, MA, USA

David.Tidmarsh@ll.mit.edu

ABSTRACT
We apply model based verification to cyber range event
environment configurations, allowing for the early
detection of errors in event environment configurations, and
a reduction in the time and resources used during
deployment. We categorize misconfiguration errors
detected using the Common Cyber Environment
Representation (CCER) ontology. We also provide an
overview of a methodology to specify verification rules and
the corresponding error messages. These rules have
successfully detected errors in the designs of several cyber
range event environments, thereby reducing cost and time
to deployment.

Author Keywords
Model based verification, Configuration, , Event
environment, Verification rules, Error messages

ACM Classification Keywords
I.6.1 [SIMULATION AND MODELING]: Simulation
Theory; I.6.5 [SIMULATION AND MODELING]: Model
Development

1. INTRODUCTION
Cyber ranges provide the infrastructure needed to conduct
testing, training, and exercise events over operationally
relevant and representative environments. Conducting large
cyber range events requires considerable effort and time. A
cyber range event has four distinct phases: planning and
design, deployment, execution, and post-execution [1]. One
way to reduce the time taken to conduct an event is to
reduce the time spent in the deployment phase. Improving
procedures in the deployment phase also reduces the total
amount of resources used, because some of the cyber
range’s most expensive resources are used during the
deployment and execution phases. Any errors detected
during deployment will require debugging and, therefore,
add to the time and range resources used for deployment.
This problem is not unique to cyber ranges. Configuration
errors have been found to be one of the dominant causes of
system failures [2]. It has been estimated that configuration
errors account for 50% to 80% of the downtime and
vulnerabilities in cyber infrastructure [3]. Therefore, finding
and eliminating errors in the environment configuration
prior to deployment can help diminish the time and

resources consumed detecting, debugging, and fixing these
errors during the event’s deployment phase.

One effective way to reduce these errors is to verify and
validate the environment configuration even before the
environment is fully deployed. We explore the use of a
model based approach for detection of configuration errors
in the planning and design phase. The verification and
validation of network configurations has been studied
extensively [4,5,6,7,8,9]. However, previous work either
does not provide a methodology for identifying and
specifying rules, or describe how the corresponding rule
violation error messages are generated to help environment
designers. Both of these are important when verifying an
event configuration that may include users, applications,
operating systems, servers, hosts, routers, switches, control
planes, and instrumentation planes, many of which lack
models for their configuration.

Our main contributions in this paper are the following.
First, we have developed a configuration ontology called
Common Cyber Environment Representation (CCER).
Second, we present a classification scheme for
misconfiguration errors based on an analysis of the more
than 125 rules currently implemented using CCER. Third,
we establish the importance of visual elements in a diagram
in generating error messages corresponding to these rules
when the environments are described in diagrams. Finally,
we describe a methodology for identifying and specifying
verification rules and error messages for cyber range event
environments. In the past two years, these rules have been
used to flag configuration errors in environment designs for
several cyber range events.

The rest of the paper is organized as follows. Section 2
provides an overview of the CCER ontology, and its current
component ontologies. Section 3 describes the connections
between diagrams, verification rules, and error messages,
with examples from CCER. Section 4 provides a
classification of misconfiguration errors detected using
CCER. Section 5 provides an overview of a methodology
for developing the verification rules, and for specifying
corresponding rule violation error messages. Section 6
provides a case study motivating our claims about time
savings in deployed ranges, Section 7 reviews related work,
and Section 8 concludes this paper.

Distribution A: Public Release.
SCSC 2016, April 3-6, 2016, Pasadena, CA, USA
© 2016 Society for Modeling & Simulation International (SCS)

2. CCER
CCER is an ontology used for specifying operationally
relevant and representative cyber range event environment
configurations. Ontologies have been used previously to
specify cyber event assets, for example by Nodine et al.
[10]. The CCER ontology is specified in the Web Ontology
Language, OWL [11]. The CCER ontology contains
representative and constructive models [1] of configuration
of entities in the event environment.

The CCER ontology contains multiple topics. Each topic is
a largely self-contained configuration ontology unto itself.
The current topics include the following:

 User: organizations, teams, and behaviors of
users.

 Application & OS: applications commonly found
on enterprise office computers, such as Microsoft
PowerPoint or Outlook, and operating systems.
Both the OS and Application topics use Common
Platform Enumeration (CPE) strings [12] to
describe their contents. CPE strings allow a precise
specification of the make, model, and version of
the software or platform.

 Service: multiple types of services such as DHCP,
DNS, file, firewall, or proxy.

 IP Device: devices with IP addresses such as
computers or devices that support IP-based traffic
such as routers.

 Ethernet Device: Ethernet devices, and
technologies that support network traffic.

 Physical Location: the cyber range and the sites
where it is located.

 Visual Location: the visual location of shape
instances in a diagram.

 Control Plane: entities such as traffic generators
and other assets that control the entities and
activities within the Event Plane.

 Instrument Plane: data collection services or
probes.

In the next section, we provide an overview of our system
for creating diagrams, applying rules, and generating errors.

3. DIAGRAMS, RULES, AND ERRORS
Designers describe event environments using a diagram.
When developing verification rules, it is important to
meaningfully report errors in the diagram to the designers,
especially if they are unfamiliar with the rules. Therefore,
error or warning statements must be specified within the
context of how an environment is represented (in this case,
as a diagram). In this section, we provide an overview of
our system to design an event environment and generate
rule violation error messages.

3.1. Processing an Event Environment Description
Fig. 1 provides an overview of how an event environment
description is processed by the CCER tool suite. First, an
environment designer creates a diagram to represent an

event environment using a visual editor. In CCER, such
diagrams are currently created using Microsoft Visio,
though other visual editors may be supported in the future.
A visual editor presents a user with a palette of shapes, each
of which captures the configuration requirements of an
entity in the event environment. A shape will have a set of
fields to which the designer assigns values. The shapes are
related via spatial-arrangements described in a visual
schema, which we describe in more detail in the next
section. When using Microsoft Visio, a CCER Visio Stencil
defines the visual schema. A diagram consists of shape
instances that are instantiations of the shapes with entries in
their fields. A shape instance is usually created by dragging
a shape into the work area, and then assigning values to its
fields.

Figure 1: System Overview

An ontology instance contains information corresponding to
a specific entity in the event environment. For example, in
the IP Device topic, the Computer Ontology instance will
specify the configuration of a specific Computer. This
instance is specified as a NamedIndividual [11], Ent‐NS‐
Client1_CCERID_44_1, belonging to the Computer
OWL Class (Fig. 2). The shape instances in a diagram are
translated into CCER ontology instances containing many
NamedIndividuals of OWL classes for further processing.

The NamedIndividuals also specify one or more data and
object properties. An object property specifies a reference
to another NamedIndividual, whereas a data property
specifies any value other than such a reference. In RDF,
property statements are referred to as triples with the
structure <Subject, Property, Object>. In Fig. 2, the
NamedIndividual corresponding to the Computer OWL
Class is the Subject, and object properties specify the
NamedIndividual that is the Object. For example, hasUser
is an object property with the value
Person_CCERID_1_17 that is a NamedIndividual of a
User OWL Class. There are multiple hasUser object
properties with different such NamedIndividuals as Objects.

Furthermore, the data property hasInstalledApplication
specifies the application’s CPE string. Note that there are
multiple such properties with different CPE strings for this
Computer instance.

Figure 2: Example Computer Ontology Instance

To summarize, the CCER ontology defines the OWL
Classes and any data and object properties, while the
ontology instance defines the NamedIndividuals that are
members of OWL Classes and the values for the data and
object properties of NamedIndividuals. Explaining all of the
properties for the Computer instance in Fig. 2 is outside the
scope of this paper.

The verification engine processes the ontology instance by
applying the verification rules. The verification engine
attempts to find all errors, instead of finding the first error
and stopping. The rules should be processed over the
ontology instances corresponding to both error-free and
erroneous diagrams. This requirement imposes much harder
requirements in processing diagrams. To prevent
verification engine from crashing while processing such
diagrams, we do several preprocessing steps. For example,
to be able to report Uniqueness Violation error (explained
in Section 4), irrespective of whether the values specified in
a shape instance are unique or not, unique
NamedIndividuals are automatically created for every

shape instance in a diagram because RDF ignores duplicate
NamedIndividuals [11].

3.2. Visual Schema
Visual schemas describe objects in terms of the physical
properties and�spatial-arrangements of their components
[13]. CCER visual schema defines the shapes in diagrams,
their fields, the spatial-arrangements and implied semantic
relationships among the shapes. We consider a visual
schema as static if the shapes, fields, default values of the
fields, or relationships among the shapes do not change
during the creation of a diagram, and as dynamic if they do
change.

In CCER, the current visual schema is specified using a
Visio Stencil [14]. The CCER Visio Stencil is a static visual
schema. A Visio Stencil (.vss file) is a collection of shapes
associated with a particular Microsoft Office Visio template
(.vst file). A CCER Visio Stencil will hold shapes that
contain shapes with fields created by the CCER team.

The CCER visual schema specifies the shapes and their
fields, and includes the following relationships.

1. Fields: The CCER visual schema may specify default
values for fields of shapes, identify required and
optional fields, or restrict values for a field through a
drop down list.

2. Container: A Container relationship may be defined
between a Container shape and a Containee shape if
and only if some of the values specified in the fields of
the shape instance of the Container shape are inherited
by the shape instance of the Containee shape. For
example, in Fig. 3, the Subnet shape is a Container
shape, and its “west.org” instance contains other shape
instances such as a Computer, Server, and DNS
Service. In this case, the value of a field in west.org
may be inherited by these shape instances. Note that a
shape can be both a Container and a Containee. For
example, the Subnet shape itself may be a Containee
shape with respect to another shape, Cyber Range.

Figure 3: Subnet shape is a Container

3. Connection: One shape is a Connector to, or is
participating in a Connection relationship with, another
shape when the visual connection of their respective
shape instances in a diagram implies that one of the
shapes inherits some of the other’s fields. Defining and

recognizing when a visual connection is valid is left to
the visual editor.

Figure 4: Router Interface shape as Connector

For example, in Fig. 4, the line labeled “5.5.5.1/24” is a
Router Interface instance. A Router Interface is a Connector
shape. The empty red square on the left end and the solid
red square on the right end indicate that the connection is
valid. Indeed, the Router Interface is connected to the
Router shape instance on the left and the Subnet shape
instance on the right. The use of these rectangles to show
this connection is specific to Microsoft Visio, and is not
part of the visual schema.

4. Aggregation: Shape A is an “Aggregator” of shape B
if and only if a shape instance of A can be used to
specify multiple shape instances of B. In Fig. 5, a
ComputerGroup shape instance is shown that specifies
5 Computers in the HostCount field, starting at
IPAddress 10.1.2.6, each with the “windows_8”
Operating System.

Figure 5: Aggregator Example

5. Scope: Shape A is scoped within shape instance B, if
the processing of shape instance A’s fields is done by
analyzing shape instance B, and all other shape
instances that are scoped within shape instance B. If a
shape instance is not scoped within any other shape
instance, then its scope is considered global. The
Container relationship mentioned earlier may result in
a Scope relationship between the Containee and

Container shapes. However, it is not necessary to have
a Container relationship for a Scope relationship to
exist. For example, a User Type shape instance may
specify, in a HostAssignment field, a set of Subnets
where users of a specific User Type may need to be
created. User Type does not have a Containee
relationship to Subnet shape, but the scope of User
Type includes the Subnets specified.

A shape may participate in multiple relationships
simultaneously, in which case all such relationships are
used to calculate the field values of its shape instance. Let
us consider the case when a shape participates in Container
and Connection relationships simultaneously. For example,
the Subnet shape usually participates in both: as a
Container, and in a Connection relationship. When a Router
Interface connector shape instance has a field with a
Default Gateway value, and is connected to a Subnet shape
instance, the Subnet shape instance inherits this value, and
the Computer shapes within the Subnet shape instance in
turn will also inherit this value.

3.3. Diagrams and Error Statements
Error messages, including warning messages, are generated
when a verification rule violation is detected. The errors
need to be described in terms of the shape instances and
fields to make sense to the diagram designer, even though
the rule that flags this error is processed over the ontology
instance that may have different names and relationships.
Errors may be shown visually on a diagram by annotating a
shape instance, or through textual error statements that refer
to shape instances and the values in their fields. However
there are challenges in creating such error messages. We
describe some of these challenges below.

Complex Relationships
When the ontology instance and shape instance have a one-
to-one correspondence between the shape fields and OWL
Class properties, it is easy to specify the error messages in
terms of the shape instances, even though the rule is
implemented over the ontology instance. However,
sometimes fields in a shape instance may not map to a
single ontology instance. This is usually the case when
some of the relationships described in the previous section
are involved. Below are a couple of examples that illustrate
this situation.

Container Relationship Example: In this case, errors in an
ontology instance may be caused by the absence or
presence of values inherited by a shape instance from a
Container type shape instance. Consider a Subnet shape that
is a Container shape (see Fig. 3). The Host and Server
shape instances within a Subnet shape instance inherit the
value of the Default Gateway field from the Subnet shape
instance. Therefore, an error in the Default Gateway value
discovered on a Host shape instance is really caused by the
Default Gateway value in the Subnet shape instance, and
should be reported as such. In some situations, the shapes
that are within a Container shape are allowed to override

the inherited value, and in such situations, the inherited
value and the provided value need to be compared prior to
generating the error message.

Aggregation Relationship Example: Since an aggregator
shape instance (see Fig. 5) describes multiple ontology
instance elements and properties using a single shape
instance, when an error is detected in one generated
ontology instance, then all such generated instances will
have the same error. To prevent a deluge of the same error
for all such instances, the error messages should be limited
to just one.

4. TYPES OF VERIFICATION ERRORS
CCER’s rules were developed organically over two years,
motivated by the needs of actual cyber range events. We
have analyzed the verification rules in terms of the types of
errors they describe. The following may serve as a checklist
for deriving rules.

1. Invalid Format: The value entered in a visual
field does not match the value’s required format.

2. Unspecified Value: A required value is not
specified in a field of the shape.

3. Inconsistent Value: A specified value is not
consistent with another value elsewhere in the
diagram.

4. Out-of-range Value: The specified value is out of
the contiguous range or the set of allowed values
for the value. The range can be directly or
indirectly specified. An indirect specification
occurs when the range for a field value is implied
due to the value of a field attribute elsewhere in
the model.

5. Uniqueness Violation: When the same shape
instances or corresponding ontology elements
require uniqueness in one or more field values
within a specified scope, and this uniqueness is
violated, this error occurs. In our experience, the
most common cause of this error is “copy-and-
pasting” shape instances in a diagram.

6. Non-existent Reference (Direct): A reference
specified in a field does not exist in the diagram.

7. Non-existent Reference (Indirect): A value
specified for a field does not match a related field
in any other shape instance.

8. Unspecified Reference: A required reference is
not specified in a field of a shape.

9. Inconsistent Reference: A specified reference is
not consistent with another specified reference
elsewhere in the model. This type of error
indicates where the visual schema may be made
better by automatic inference.

10. Singleton Violation: When only one shape
instance is permitted within a given scope, and this
rule is violated, this error occurs.

11. Generational Insufficiency: In CCER, values for
some OWL ontology instance properties are

calculated from the specified field values or
references in shapes. When these values are either
out of range or are not generated, then this error is
flagged.

12. Abnormal Specification: Sometimes, the
specified diagram has no model-violating errors.
However, it is not good practice, or is abnormal, to
make such specifications. We, therefore, classify
these errors as “abnormal.”

In the above classification of errors, we avoid “Incorrect
Value” as a type of error. Instead, we have further refined
this type of error into other types: Unspecified Value, Out-
of-range Value, Inconsistent Value, Uniqueness Violation,
and Generational Insufficiency. Similarly, instead of
“Incorrect Reference,” as a type of error, we further refined
that into other types: Non-Existent Reference
(Direct/Indirect), Inconsistent Reference, and Singleton
Violation.

In the next section, we discuss both the methodology of
verification rule development and corresponding error
statement specification using CCER with examples.

5. METHODOLOGY FOR RULE DEVELOPMENT
While developing verification rules for elements within the
various ontology topics, over time, we observed that we
were repeatedly following the same steps. Developing the
verification rules requires a precise model of the
configuration of the components or concepts, a
specification of the OWL Classes, and relevant object and
data properties. We describe these steps below, and also
illustrate with an example based on a DHCP service.

Step 1: Develop a written description of the configuration
of the entities in sufficient detail. Note that there may be
many entities that interact in a model description, and some
of the existing entities may need changes due to interactions
with the new configurations.

Example: The DHCP Service will need an IPAddress
Range specification that will be allocated to Hosts, and
IPAddress Exceptions in the IPAddress Range. The DHCP
Service will need to specify the server on which it will run
(DHCPServiceName). The IPAddress Range should be
identified as public or private. Each entity that can have an
IPAddress in the Event Plane must specify whether it is a
DHCP Client. Currently, only dynamic DHCP address
allocation is permitted. Also, DHCP Service is currently not
permitted on a Router.

Step 2: Describe the shapes, their attributes, and constraints
such as available choices that are required to generate the
corresponding ontology instance.

Example: See Fig. 6. The ServerName specifies the server
on which this DHCP Service will run. The
StartingDataIPAddress and the EndingDataIPAddress
specify the IPAddress Range for allocation. The IPAddress
Exceptions specify the IPAddress exceptions separated by

a semicolon. The StartingControlIPAddress and the
EndingControlIPAddress specify the range of
ControlIPAddresses. The ControlIPAddressExceptions
specify the exceptions separated by a semicolon. Finally,
the IPAddressSpace allows a drop down list of Private or
Public (with Private being the default).

Figure 6: Fields

Step 3: Describe in detail the OWL Classes, data
properties, and object properties of the ontology
corresponding to the configuration. Also, create a sample
ontology instance for the OWL Classes with sample object
and data properties.

Figure 7: An Ontology Instance for DHCP Service

Example: Fig. 7 describes an ontology instance of an OWL
Class for the DHCP Service with the associated object and
data properties. Note that the OWL Classes corresponding
to the “object” of object properties also need to be created if
they do not already exist.

Figure 8: IPAddressRange Instance

The instances (NamedIndividuals) of the IPAddressRange
OWL Class are used in the dataIPAddressRange and
controlIPAddressRange object properties (Fig. 8).

Step 4: Define the verification rules and error statements.
In this step, the shapes in the fields are evaluated for all of
the error categories discussed in Section 4.

Example: The example shown in Fig. 9 shows one of the
DHCP Rules and the corresponding error message. In the

error message, the phrase “DHCP Service:” refers to the
shape concerned, and the phrase starting with
“$DHCPService” refers to the corresponding ontology
instance. If the ExceptionIPAddresses specified by the users
needed to be shown in the error message, those would need
to be specified with both the “:” and “$” qualifiers.

Figure 9: Rule and Error Message Example

6. CASE STUDY
A case study on the use of the CCER tool suite will be
helpful in understanding where time is spent when
designing a new environment. Fig. 10 summarizes the time
spent in designing a moderately sized event environment
with 5 subnets, a simulated Internet, 3 routers, and 5
switches, with approximately 100 computers and users and
25 services. The x-axis is the actual time spent in hours on
the activities shown on the y-axis. Training included both
in-person training and answering questions via email and
phone.

Figure 10: Time Statistics

Fig. 10 shows that the development activity took most of
the time, and the requirements analysis required less than
half as much time. The requirement analysis activity
included discussions on specific missing details, including
those that caused verification errors. In this particular case's
requirements analysis, an initial sketch of a diagram was
drawn prior to working with the CCER tool suite, and a
record of the time spent drawing that diagram was not
available for inclusion in our statistics. Over 300 errors
were reported and corrected in the development phase, but
the deployment phase did not get delayed due to
misconfiguration of the entities in the diagram. These
proportions are consistent with other cases we have worked
on.

Our system currently has over 125 verification rules. In
many cases, we are able to create error messages that
directly refer to the erroneous shape instances in the
diagram. Frequent users of the system are able to make
sense of even cryptic error messages. We find that both new

users and frequent users are occasionally surprised by the
errors shown, though for different reasons. New users are
surprised because of their unfamiliarity with the errors, and
frequent users are surprised because they did not expect to
make such simple errors. Most users took less than a day to
become comfortable developing new diagrams,
understanding the error messages, and correcting errors for
commonly used shapes.

7. RELATED WORK
In previous work applying model based verification and
validation for software configuration Cordero et al. [15]
built a software development environment that uses to
support the development and verification of on-board
software for spacecraft. Tanizaki et al. [16] use a SAT
solver approach to model and check the consistency of
configuration files and discover syntactic and semantic
errors. Quinton et al. [17] have established an architecture
based on feature models and ontologies to describe and
model cloud computing systems, reducing variability when
working with multi-cloud configurations.

In the field of firewall configuration and policies, current
approaches to model based verification and validation
include work by Brucker et al. [18], who provide a formal
model of stateful and stateless firewalls, and a framework
that tests actual firewalls using that model. Moussa et al.
formalize the process of verifying consistency among a set
of firewalls with a global security policy [9]. Adão et al.
[19] present a tool for converting abstract firewall models
into concrete configurations for the Netfilter networking
framework in Linux. Windmüller [7] uses a configuration
that combines a model checker, a graphical modeling
environment, and external tools to simplify the process of
testing and validation of firewall setups for end users.
Industry efforts such as Cisco’s CLI [20] have focused on
specific entities such as Routers. Finally, Anderson et al. [6]
report on an online network validation tool for Emulab.

However, the approaches mentioned above do not fully
address the needs for configuring a rich set of entities
within an event environment. These approaches also are not
designed to be sufficiently extensible and flexible to
support the addition of new domains, nor do they address
the problem of explaining errors in a way that a novice
designer can understand.

We hope to evaluate the models developed in such works
for future cyber range event environments. For example,
cyber ranges often attempt to replicate critical infrastructure
networks—such as those belonging to a transportation
system, a hospital, or an industrial plant—that have both
cyber and physical components. This is in the tradition of
Tang et al. [21], who extended the use of Modelica, a
modeling language to describe complex physical systems,
into the realm of cyber-physical systems modeling.

8. CONCLUSIONS
In this paper, we have presented a model based verification
approach employed in the CCER tool suite for use by cyber
range event environment designers. We identified the key
role a visual schema plays in generating appropriate error
messages when verification rules are violated. We have
presented a categorization of configuration errors, and
described a methodology for creation of rules and error
messages. This methodology is being used to create
additional verification rules for new domains. We have
successfully used the CCER tool suite to create cyber range
environments of varying complexity and scale for several
events.

We still have much work to do to improve our systems. One
area for improvement is reducing the number of error
messages corresponding to the same user mistake. Another
area is the evaluation of the impact of a dynamic visual
schema on reducing the time involved in detection and
fixing errors. Making the error messages more intuitive for
designers is another area of future improvement.

We continue to expand our configuration ontologies, write
new rules and error messages using the methodology
described in this paper. We also plan a performance
analysis of the rules verification engine to study how
performance is affected by the size of the diagrams.

9. ACKNOWLEDGEMENTS
Ritesh Patel and Serge Vilvovsky made substantial
contributions to the implementation of the CCER tool suite,
including the rule verification system. We also thank
Antonio Roque and Christine Cunningham for their
comments.

This work is sponsored by the Test Resource Management
Center under Air Force Contract FA8721-05-C-0002.
Opinions, interpretations, conclusions and
recommendations are those of the author and are not
necessarily endorsed by the United States Government.

REFERENCES

[1] Suresh K. Damodaran and Jerry M. Couretas, "Cyber
Modeling & Simulation for Cyber-Range Events," in
Summer Simulation Multi-Conference, Chicago, IL,
USA, 2015.

[2] Z. Yin, X.,Zheng, J., Zhou, Y. Ma, and L.N.,
Pasupathy, S. Bairavasundaram, "An Empirical Study
on Configuration Errors in Commercial and Open
Source Systems," in SOSP, Cascais, Portugal, 2011.

[3] Sanjai Narain, Sharad Malik, and Ehab Al-Shaer,
"Towards Eliminating Configuration Errors in Cyber
Infrastructure," in 4th IEEE Symposium on
Configuration Analytics and Automation, Arlington,
VA, 2011.

[4] Sanjai Narain, Rajesh Talpade, and Gary Levin,
"Network Configuration Validation," in Guide to

Reliable Internet Services and Applications. London:
Springer-Verlag, 2010.

[5] Sanjai Narain, "Network Configuration Management
via Model Finding," in 19th Large Installation System
Administration Conference, San Diego, 2005, pp. 155-
168.

[6] David S. Anderson, Mike Hibler, Leigh Stoller, Tim
Stack, and Jay Lepreau, "Automatic Online Validation
of Network Configuration in the Emulab Network
Testbed," 3rd IEEE International Conference on
Autonomic Computing, 2006.

[7] Stephan Windmüller, "Simplifying Firewall Setups by
Using Offline Validation," Journal of Integrated
Design and Process Science, vol. 17, no. 3, pp. 59-69,
2013.

[8] Ehab Al-Shaer and Saeed Al-Haj, "FlowChecker:
Configuration Analysis and Verification of Federated
OpenFlow Infrastructures," in SafeConfig '10,
Chicago, 2010, pp. 37-44.

[9] Majda Moussa, Hakima Ould-Slimane, Hanifa
Boucheneb, and Steven Chamberland, "A Formal
Framework for Verifying Inter-Firewalls
Consistency," in 19th IEEE Symposium on Computers
and Communication, Piscataway, 2014.

[10] M Nodine, R. Grimshaw, P. Haglich, S. Wilder, and B
Lyles, "Computational Asset De-scription for Cyber
Experiment Support using OWL ," in Proc. of Fifth
IEEE International Conference on Semantic
Computing (ICSC), 2011, pp. 110-117.

[11] W3C. (2012, December) World Wide Web
Consortium (W3C). [Online].
http://www.w3.org/TR/owl-overview/

[12] National Institute of Standards and Technology. (2014,
January) The Security Content Automation Protocol
(SCAP) - NIST. [Online].
http://scap.nist.gov/specifications/cpe/

[13] Risto Miikkulainen and Wee Kheng Leow, "Visual
Schemas in Object Recognition and Scene Analysis,"
in The Handbook of Brain Theory and Neural
Networks. Cambridge, MA: MIT Press, 1995, pp.
1029-1031.

[14] Microsoft. (2015) Support - support.office.com.
[Online]. https://support.office.com/en-au/article/A-
beginner-s-guide-to-Visio-2010-88d2a308-7283-4981-
839d-86e2aca8c456

[15] Federico Cordero et al., "A Cost-Effective Software
Development and Validation Environment and
Approach for LEON Based Satellite & Payload

Subsystems," in 5th International Conference on
Recent Advances in Space Technologies, Piscataway,
2011.

[16] Hiroaki Tanizaki, Toshiaki Aoki, and Takuya
Katayama, "A Variability Management Method for
Software Configuration Files," in The 24th
International Conference on Software Engineering
and Knowledge Engineering, Redwood City, 2012.

[17] Clément Quinton, Nicolas Haderer, Romain Rouvoy,
and Laurence Duchien, "Towards Multi-Cloud
Configurations Using Feature Models and
Ontologies," in International Workshop on Multi-
Cloud Applications and Federated Clouds, Prague,
2013.

[18] Achim D. Brucker, Lukas Brügger, and Burkhart
Wolff, "Formal Firewall Conformance Testing: An
Application of Test and Proof Techniques," in
Software Testing, Verification and Reliability, 2015,
pp. 34-71.

[19] P. Adão, C. Bozzato, G. Dei Rossi, R. Focardi, and F.
L. Luccio, "Mignis: A Semantic Based Tool for
Firewall Configuration," in 27th Computer Security
Foundations Symposium, Los Alamitos, CA, 2014.

[20] Cisco Systems, Inc. Cisco IOS Configuration
Fundamentals Configuration Guide Release 12.2.
[Online].
http://www.cisco.com/c/en/us/td/docs/ios/12_2/configf
un/configuration/guide/ffun_c.pdf

[21] Junjie Tang, Jianjun Zhao, Jianwan Ding, Liping
Chen, and Gang Xie, "Cyber-Physical Systems
Modeling Method Based on Modelica," in
International Conference on Software Security and
Reliability Companion, Los Alamitos, 2012.

